Exercise 7

Use power series to solve the differential equation.

$$
(x-1) y^{\prime \prime}+y^{\prime}=0
$$

Solution

$x=0$ is an ordinary point, so the ODE has a power series solution centered here.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to x.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Differentiate the series with respect to x once more.

$$
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Substitute these formulas into the ODE.

$$
(x-1) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n-1}=0
$$

Expand the left side.

$$
x \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n-1}=0
$$

Bring x inside the summand.

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n-1}=0
$$

Because of the $n-1$ inside the summand, the first series can start from $n=1$.

$$
\sum_{n=1}^{\infty} n(n-1) a_{n} x^{n-1}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=1}^{\infty} n a_{n} x^{n-1}=0
$$

Make the substitution $n=k$ in the first series, the substitution $n=k+1$ in the second series, and the substitution $n=k$ in the third series.

$$
\sum_{k=1}^{\infty} k(k-1) a_{k} x^{k-1}-\sum_{k+1=2}^{\infty}(k+1)[(k+1)-1] a_{k+1} x^{(k+1)-2}+\sum_{k=1}^{\infty} k a_{k} x^{k-1}=0
$$

Simplify the second series.

$$
\sum_{k=1}^{\infty} k(k-1) a_{k} x^{k-1}-\sum_{k=1}^{\infty}(k+1) k a_{k+1} x^{k-1}+\sum_{k=1}^{\infty} k a_{k} x^{k-1}=0
$$

Since all series start from $k=1$ and have x^{k-1} in the summands, they can be combined.

$$
\sum_{k=1}^{\infty}\left[k(k-1) a_{k}-(k+1) k a_{k+1}+k a_{k}\right] x^{k-1}=0
$$

The quantity in square brackets must be zero.

$$
\begin{gathered}
k(k-1) a_{k}-(k+1) k a_{k+1}+k a_{k}=0 \\
k^{2} a_{k}-k(k+1) a_{k+1}=0
\end{gathered}
$$

Solve for a_{k+1}, noting that $1 \leq k<\infty$.

$$
a_{k+1}=\frac{k}{k+1} a_{k}
$$

In order to determine a_{k}, plug in values for k and try to find a pattern.

$$
\begin{array}{ll}
k=1: & a_{2}=\frac{1}{1+1} a_{1}=\frac{1}{2} a_{1} \\
k=2: & a_{3}=\frac{2}{2+1} a_{2}=\frac{2}{3}\left(\frac{1}{2} a_{1}\right)=\frac{1}{3} a_{1} \\
k=3: & a_{4}=\frac{3}{3+1} a_{3}=\frac{3}{4}\left(\frac{1}{3} a_{1}\right)=\frac{1}{4} a_{1}
\end{array}
$$

The general formula is

$$
a_{m}=\frac{1}{m} a_{1}
$$

for $1 \leq m<\infty$. Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =a_{0}+\sum_{m=1}^{\infty} a_{m} x^{m} \\
& =a_{0}+\sum_{m=1}^{\infty} \frac{1}{m} a_{1} x^{m} \\
& =a_{0}+a_{1} \sum_{m=1}^{\infty} \frac{x^{m}}{m}
\end{aligned}
$$

where a_{0} and a_{1} are arbitrary constants. Note that for the infinite series to converge, $-1<x<1$.

